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ABSTRACT 
Beams are one of the common types of structural components and they are fundamentally categorized as 

uniform and non-uniform beams. The non-uniform beams has the benefit of better distribution of strength and 

mass than uniform beam. And non-uniform beams can meet exceptional functional needs in 

aeronautics,robotics,architecture and other unconventional engineering applications. Designing of these 

structures is necessary to resist dynamic forces such as earthquakes and wind.  

The present paper focuses on static and dynamic reanalysis of a tapered cantilever beam structure using 

multipolynomial regression method. The method deals with the characteristics of frequency of a vibrating 

system and the procedures that are available for the modification of physical parameters of vibrating system. 

The method is applied on a tapered cantilever beam for approximate structural static and dynamic reanalysis. 

Results obtained from the assumed conditions of the problem indicate the high quality approximation of stresses 

and natural frequencies using ANSYS and Regression method. 

 

I. INTRODUCTION 

A beam is a structural element and it can be able 

to withstand load predominately by resisting the 

bending. Beams can be categorized into different 

classes depending on different attributes such as 

shape of cross-section, geometric profile, boundary 

conditions etc. In present problem we are using the 

tapered beam which are being increasingly using in 

various engineering applications. The benefits of 

these beams are structural efficiency, ability to meet 

architectural requirements and less fabrication costs. 

These tapered beams can be used in high-rise 

structures, bridges, commercial building applications.  

II. LITERATURE 
P.Nagalatha and P.sreenivas[1] done the 

reanalysis of structural modification of abeam 

element based on natural frequencies using 

polynomial regression method. The results obtained 

from both FEM and Regression method are compared 

and the error obtained is very 

small.B.RamaSanjeevasresta and 

Dr.Y.V.MohanReddy[2] presented a paper which 

focuses on dynamic reanalysis of simple beam 

structure using a polynomial regression method. E 

Ozkaya [3] considered linear transverse vibrations of 

simply supported Euler-Bernoulli beam carrying 

masses.For different number of masses, mass ratios 

and mass locations natural frequencies are calculated. 

R Vasudevan and B Parthasaradhi [4] studied the free 

vibration responses of a rotating tapered composite 

beams with tip mass. The natural frequencies of 

rotating tapered composite beam at all the modes 

considered are increased with increase in hub 

radius.Dhyai Hassan Jawad [5] presented the free 

vibration and buckling behaviour of non-uniform 

Euler-Bernoulli beam under variation of tapered 

parameter and degree of flexural bending by using 

Finite Element Method and it is linked with Mat lab 

Program.S C Mohanty[6] investigated the free 

vibration of a functionally graded ordinary(FGO)pre-

twisted cantilever Timoshenko beam. Increase in the 

value of power law index decreases the first two 

modal frequencies of beam. 

 

III. STATIC REGRESSION 

REANALYSIS 
We use the principle of minimum potential 

energy for deriving the equilibrium equations for a 

three-dimensional problem. Since the nodal degrees 

of freedom are treated as unknowns in the present 

formulation, the potential energy πp has to be first 

expressed in terms of nodal degrees of freedom. Then 

the necessary equilibrium equations can be obtained 

by setting the first partial derivatives of πp with 

respect to each of the nodal degrees of freedom equal 

to zero. The various steps involved in the derivation 

of equilibrium equations are given below. 

 

Step 1: The solid body is divided into E finite 

elements. 

 

Step 2: The displacement model within an element 

“e” is assumed as 

𝑈 =   
𝑢(𝑥, 𝑦, 𝑧)
𝑣(𝑥,𝑦, 𝑧)

𝑤(𝑥, 𝑦, 𝑧)
  =[N]Q

(e) 
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Where Q
(e)

 is the vector of nodal displacement 

degrees of freedom of the element and [N] is the 

matrix of shape functions. 

Step 3: The element characteristic (stiffness) 

matrices and characteristic (load) vectors are to be 

derived from the principle of minimum potential 

energy. For this the potential energy functional of the 

body πp is written as (by considering only the body 

and surface forces). 

𝜋𝑝 =  𝜋𝑝
(𝑒)

𝐸

𝑒=1

 

Where 𝜋𝑝
(𝑒)

is the potential energy of element e given 

by 

Where V
(e)

 is the volume of the element, S1
(e)

 is the 

portion of the surface of the element over which 

distributed surface forces or tractions, φ ,are 

prescribed and φ is a vector of body forces per unit 

volume. 

The strain vector ϵ appearing in equation can be 

expressed in terms of the nodal displacement vector 

Q
(e) 

by differentiating equation suitably as 

The stress can be obtained from the strains𝜀   using  

𝜍 =  𝐷  𝜀 − 𝜀0     =  𝐷  𝐵 𝑄 𝑒         −  𝐷 𝜀0    
 

𝜋𝑝
(𝑒)

=
1

2
 𝑄(𝑒)𝑇           

𝑉(𝑒)

[𝐵]𝑇 𝐷  𝐵 𝑄 𝑒         𝑑𝑉

−  𝑄 𝑒 𝑇           

𝑉 𝑒 

 𝐵 𝑇 𝐷 𝜀0    𝑑𝑉

−  𝑄 𝑒 𝑇           

𝑆1
 𝑒 

 𝑁 𝑇∅   𝑑𝑆1

−  𝑄 𝑒 𝑇           

𝑉(𝑒)

 𝑁 𝑇∅   𝑑𝑉 

In the above equations only the body and surface 

forces are considered. But generally some external 

concentrated forces also will be acting at various 

nodes. If  denotes the vector of nodal forces (acting in 

the directions of the nodal displacement vector of the 

total structure or body ,the total potential energy of 

the structure or body can be expressed as 

𝜋𝑝 =   𝜋𝑃
(𝑒)

𝐸

𝑒=1

− 𝑄  𝑇𝑃𝐶     
 

The static equilibrium configuration of the structures 

can be found by solving the following necessary 

conditions (for the minimization of potential energy). 
𝜕𝜋𝑃

𝜕𝑄  
= 0  or

𝜕𝜋𝑝

𝜕𝑄1
=

𝜕𝜋𝑃

𝜕𝑄2
= ⋯ =

𝜕𝜋𝑃

𝜕𝑄𝑀
=0 

 

Step 4: The desired equilibrium equations of the 

overall structure or body can now be expressed using        
 

 𝐾 𝑄  = 𝑃   

 

Step 5 and 6: The required solution for the nodal 

displacements and element stresses can be obtained 

later. 

Regression 
The actual term “regression” is derived from the 

Latin word “regredi,” and means “to go back to” or 

“to retreat.” Thus, the term has come to be associated 

with those instances where one “retreats” or “resorts” 

to approximating a response variable with an 

estimated variable based on a functional relationship 

between the estimated variable and one or more input 

variables. In regression analysis, the input 

(independent) variables can also be referred to as 

“regressor” or “predictor” variables. 

 

Numerical Example 

The tapered cantilever beam of 0.75m length is 

divided into 5 elements equally. Element stiffness 

matrix and mass matrix are extracted. Natural 

frequencies of tapered beam at each node are found 

from ANSYS. 

 
Fig 1.Tapered cantilever Beam 

 

The values of young‟s modulus(E), density(ρ), 

length(l) breadth(b), depth(h) of tapered beam  are as 

follows. 

Reanalysis of the beam is done by using 

polynomial regression method and the percentage 

errors are listed in the tabular column. Stresses of 

tapered beam by increasing width and depth of the 

beam. The polynomial regression equation is given 

by 

Sn=c1b
2
-c2bh-c3h

2
-c4b-c5h+c6 

c1=1.817382813*10
-1

 

c2=0.72265625     

c3=4.482421845*10
-1

 

c4=43.640625 

c5=1.03125 

c6=1513 

 

 

 

 

Young‟s modulus(E)  

 

2.109*10
11

 N/m
2
 

Density(ρ)  

 

7995.74 Kg/m
3
 

Length(l)  

 

0.75m 

Breadth(b)  

 

 b1=0.025m  

b2=0.045m 

Depth(h)  

 

 h1=0.035m   

h2=0.055m 
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Table 1.Decreasing both width and depth of tapered 

beam. 

 

IV. DYNAMIC REGRESSION 

REANALYSIS 
In dynamic problems the displacements, 

velocities, strains, stresses and loads are all time-

dependent. The procedure involved in deriving the 

finite element equations of a dynamic problem can be 

stated by the following steps. 

 

Step 1: Idealize the body into E finite elements. 

 

Step 2: Assume the displacement model of element e 

as 

𝑈    𝑥, 𝑦, 𝑧, 𝑡 =   
𝑢(𝑥, 𝑦, 𝑧)
𝑣(𝑥, 𝑦, 𝑧)

𝑤(𝑥, 𝑦, 𝑧)
  = [𝑁 𝑥, 𝑦, 𝑧,  ]𝑄   𝑒 (𝑡) 

Where 𝑈    is the vector of displacements,  [N] is the 

matrix of shape function and𝑄   𝑒  is the vector of 

nodal displacements which is assumed to be a 

function of time t. 

 

Step 3: Derive the element characteristic (stiffness 

and mass) matrices and characteristic (load) vector. 

The strains can be expressed as 

𝜀 = [𝐵]𝑄  (𝑒) 
And stresses as 

𝜍 =  𝐷 𝜀 =  𝐷 [𝐵]𝑄  (𝑒) 

By differentiating the displacement equation with 

respect to time, the velocity field can be obtained  as 

𝑈    𝑥, 𝑦, 𝑧, 𝑡 =  𝑛 𝑥, 𝑦, 𝑧  𝑄   𝑒  𝑡  

Where𝑄   𝑒  is the vector of nodal velocities. To derive 

the dynamic equations of motion of a structure, we 

can either Lagrange equations or Hamilton‟s 

principle stated before. 

The Lagrange equations are given by  
𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑄
 −  

𝜕𝐿

𝜕𝑄
 +  

𝜕𝑅

𝜕𝑄
 =  0  

Where  

𝐿 = 𝑇 − 𝜋𝑃 

is called Lagrangian function, T is the kinetic 

energy,𝜋𝑃  is potential energy, R is the dissipation 

function, Q is the nodal displacement. 

The kinetic and potential energies of an element „‟e‟‟ 

can be expressed as 

𝑇(𝑒) =
1

2
 𝜌𝑈   𝑇

𝑉(𝑒)

𝑈   𝑑𝑉 

And 

𝜋𝑃
 𝑒 =

1

2
 𝜀 𝑇

𝑉 𝑒 

𝜍 𝑑𝑉 − 𝑈   𝑇

𝑆1
 𝑒 

∅
   
𝑑𝑆1

−  𝑈   𝑇

𝑉 𝑒 

∅
   
𝑑𝑉 

Where V
(e)

 is the volume,𝜌 is the density and𝑈    is the 

vector of velocities of element e. By assuming the 

existence of dissipative forces proportional to the 

relative velocities, the dissipation function of the  

element e can be expressed as 

𝑅 𝑒 =
1

2
 𝜇𝑈   𝑇

𝑉 𝑒 

𝑈   𝑑𝑉 

 𝑀 𝑒  =  𝜌 𝑁 𝑇 𝑁 𝑑𝑉 = 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑚𝑎𝑠𝑠𝑚𝑎𝑡𝑟𝑖𝑥

𝑉 𝑒 

 

 𝐾 𝑒  =  [𝐵]𝑇 𝐷  𝐵 𝑑𝑉

𝑉(𝑒)

= 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠𝑚𝑎𝑡𝑟𝑖𝑥  

 𝐶 𝑒  =  𝜇[𝑁]𝑇 𝑁 𝑑𝑉

𝑉(𝑒)

= 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑑𝑎𝑚𝑝𝑖𝑛𝑔𝑚𝑎𝑡𝑟𝑖𝑥  

 

Step 4: Assemble the element matrices and vectors 

and derive the overall system equations of motion. 

we can obtain the dynamic equations of motion of the 

structure or body as 

 𝑀 𝑄    𝑡 +  𝐶 𝑄    𝑡 +  𝐾 𝑄   𝑡 = 𝑃  (𝑡) 

Where𝑄     is the vector of nodal accelerations in the 

global system. If damping is neglected, the equations 

of motion can be written as  

 

 𝑀 𝑄   +  𝐾 𝑄  = 𝑃   
 

Width 

(B) 

 

 

Height 

(H)vgh 

Stress 

ANSYS 

(N/mm
2
) 

Stress  

Regression 

(N/mm
2
) 

% 

Error 

40.7 50.6 107.809 106.932 0.877 

38.6 48.6 120.230 120.112 0.118 

36.7 46.7 133.392 132.228 1.164 

35.4 45.4 156.589 156.224 0.365 

32.4 42.4 202.600 201.920 0.680 

30.2 40.2 238.811 238.231 0.580 

28.9 38.9 277.613 276.220 1.393 

27.6 37.6 302.032 301.996 0.036 
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Step 5 and 6: Solve the equations of motion by 

applying the boundary and initial conditions. 

 

Frequencies of Tapered Cantilever Beam 

After discretizing to 5 numbers of elements, 

natural frequencies of the tapered beam are calculated 

using MATLAB program and ANSYS. 

 

Table 2.Frequencies of linearly tapered cantilever 

beam for different values of α. 

 

Figure 1.Convergence of fundamental natural 

frequency for Cantilever beam. 

 

Fundamental natural frequencies of tapered beam 

by increasing width and depth of beam. The 

polynomial regression equation is given by 

Fn=c1b
2
-c2bh+c3h

2
+c4b+c5h-c6  

c1=1.240234375*10
-1

 

c2=0.1328125  

c3=2.197265625*10
-2

 

c4=0.7890625   

c5=1.140625                            

c6=16.5 

 

Table 3. Comparison of ANSYS and Regression 

results for fundamental frequencies. 

 

V. CONCLUSION 
From this work the dynamic reanalysis of 

tapered beam is done by obtaining natural 

frequencies from ANSYS and Polynomial Regression 

method. By varying the width and depth of beam 

different natural frequencies are obtained. When the 

ANSYS results are compared with the results 

obtained from regression method the error percentage 

secured is negligible. 
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